Virtual Switching
in an Era of Advanced Edges

Justin Pettit
Ben Pfaff

Jesse Gross
Martin Casado
Nicira Networks

Simon Crosby
Citrix Systems

DC CAVES 2010
What is Virtualization?

- Multiple virtual machines on the same physical host
- Lowest layer is the hypervisor, which provides the illusion
- Built by OS people
- Historically, simple bridge
Impact of Virtualization on Networking

- IP doesn’t support mobility in a scalable manner
 - Flat networks and VLANs don’t scale
 - Policies don’t follow host movement

- Network infrastructure needs to change
 - Know logical context (directly or tags)
 - Adapt to changes in the virtualization layer (signals or inference)
Hairpin Switching

- Use hardware that’s already in the network
- Bridge already dumb, make it dumber (and simpler)
- All traffic bounces off the adjacent switch
Switching at the Edge

- **Strengths**
 - Greater context
 - Enforce policies early
 - Inter-VM traffic has less overhead

- **Weaknesses**
 - CPU overhead
 - Additional switches to configure and monitor
 - Historically, feature-weak
Advanced Edge Switches

- Hardware-offloading
- Centralized management
- Approaching feature-parity with hardware switches
 - Visibility
 - ACLs
 - Quality of Service
- Examples: VMware vSwitch, Cisco Nexus 1000V, Open vSwitch
Open vSwitch

- Visibility (NetFlow, sFlow, SPAN/RSPAN)
- Fine-grained ACLs and QoS policies
- Centralized control through OpenFlow
- Port bonding, GRE, and IPsec
- Works on Linux-based hypervisors: Xen, XenServer, KVM, VirtualBox
- In the process of being upstreamed to Linux
- Open source, commercial-friendly Apache 2 license
- Multiple ports to physical switches
Open vSwitch Contributors
Approaches Compared

- Cost
- Performance
- Tagging
Cost

- Hairpin switching may be able to use existing equipment, but becomes an aggregation device that must scale to a much larger number of virtual interfaces.
- Edge can support a larger number of policy rules.
- Edge switch is just software, which makes it easy to add new features.
- Without hardware acceleration, both approaches consume hypervisor CPU cycles.
- Edge can always fall-back to software when hardware is not available.
Performance

- Edge switches have been demonstrated at 40Gbps—at significant CPU overhead
- Traffic can be dropped closer to the source with edge switch—important in clouds with over-subscribed links and untrusted sources
- Both need offloading to not take CPU hit
- Checksum and TSO offloading provide big wins; SR-IOV even bigger
- Edge will be faster for local VM-to-VM traffic
Off-box Performance

The graph shows the transfer rate (in Mbps) vs. transfer size (in bytes) for two different technologies: Open vSwitch (blue line) and VEPA (red line). As the transfer size increases, the transfer rate also increases, with Open vSwitch generally outperforming VEPA. The x-axis represents the transfer size in bytes, ranging from 1 to 100,000, and the y-axis represents the transfer rate in Mbps, ranging from 0 to 800 Mbps.
On-box Performance

![Graph showing On-box Performance with data points for Open vSwitch and VEPA. The x-axis represents Transfer size (bytes) ranging from 1 to 100,000, and the y-axis represents Transfer rate (Mbps) ranging from 0 to 6000 Mbps. The graph compares performance with different data transfer sizes.](image-url)
Tagging

- Without tags, hairpin switch must rely on fields that are easily spoofed
- Distinguish context, but don’t say anything about the contexts—need port profiles
- Tag space limited and may cause issues with multicasting and mobility
- On the plus side, may provide context throughout the network
Future

- NICs will do the heavy-lifting
 - New types of offloading
 - Bypass the hypervisor in the common case (e.g., SR-IOV)
 - Push the datapath into the NIC
- Edge is approaching feature-parity with high-end switches
- Physical switches adding same control interfaces as edge, for a unified control interface throughout the network
Conclusion

- Hairpin switches attractive when applying similar policies over all nodes or in aggregate with little local VM-to-VM traffic
- Edge switches provide more flexibility and fine-grained control at cost of hypervisor CPU cycles
- Best approach likely uses both
- Need common standardized control interface