VMready
Implementation of a Profile Based Virtual Switching Framework

Vijoy Pandey and Jay Kidambi

DC-CAVES 2010
The evolving switching primitive
Physical interfaces are the old switching unit
- Not aware of server-side virtualization technologies
- Configuration per physical interface only
 - No flexibility for unique VM needs
- No flexibility to handle VM migrations

Virtual interfaces are the new switching unit
- Fully aware of server-side virtualization technologies
- Configuration per virtual interface
- Automated Network mobility
 - Configuration follows Virtual Machines in real-time during migration

VMready: Virtualization Aware Networking
Big Picture: What is needed

Virtual Interface Identification

Virtual Interface Data Path Switching

Virtual Interface Tracking & Policy Enforcement

External Edge Switch

Network Cloud (L2 or L3)

Policy dB

Hypervisor

IOV CNA

VM Migration
 vmready uses MAC based identification of VMs today
 — MAC assignment pools for the different vendors
 vmready uses Q-in-Q for NIC-partition (vNIC) identification
A: Secure Identification

- MAC based identification of VMs is potentially **insecure**
 - Prone to spoofing attacks
- DCBX-based vNIC identification is **secure**
 - Agent running on both ends of the wire guarantees spoof-free operation
A: Secure Identification for VMs

- Closed loop secure VM verification
 - Switch verifies VM & Port attach from hypervisor and vCenter
- VM spoof protection across data center
 - VM cannot be spoofed at any hypervisor in DC
 - Visibility into which VM is connected to which BLADE Switch & Port
Number of entries: 3
* indicates VMware ESX Service Console Interface
+ indicates VMware ESX/ESXi VMKernel or Management Interface
0.0.0.0 indicates IP address not yet available

>> Virtual Machine# /cfg/virt/vmg
Enter group number: (1-32) 1

[VM group 1 Menu]
 Vlan - Set the group's vlan (only for groups with no VM profile)
 vmap - Set VMAP for this group
 tag - Enable vlan tagging on all VM group ports
 addvm - Add a virtual entity to the group
 remvm - Remove a virtual entity from the group
 validate - Sets secure mode for all VMs in this group
 addprof - Add a VM profile to the group
 remprof - Delete any VM profile associated with the group
 addport - Add ports to the group
 remport - Remove ports from the group
 addtrunk - Add trunk to the group
 remtrunk - Remove trunk from the group
 addkey - Add LACP trunk to the group
 remkey - Remove LACP trunk from the group
 stg - Assign VM group vlan to a Spanning Tree Group
 del - Delete group
 cur - Display current group configuration

>> VM group 1# addvm 00:50:585:8b:48:a8

>> VM group 1# apply
.

Apply complete; don't forget to "save" updated configuration.

>> VM group 1# 2000-08-09 15:06:03:Unauthenticated MAC [00:58:56:8b:48:a8] from port 1 switchId [172.31.1]
Disabling port 1 because verification failed on the port

Aug 9 6:58:41 172.31.213.1 NOTICE server: link down on port INT1

Aug 9 7:00:22 172.31.213.1 NOTICE vm: Virtual Machine with IP address 172.31.213.2 came online

Aug 9 7:02:37 172.31.213.1 NOTICE mgmt: Port MGT1 ENABLED and MGT2 DISABLED because Management Module
vCenter Visibility of BLADE Switch & Ports

172.31.46.6 VMware ESX, 4.0.0, 164009

Hardware
- Processors
- Memory
- Storage
 - Networking
 - Storage Adapters
 - Network Adapters
 - Advanced Adapters
- Advanced Settings

Software
- Licensed Features
- Time Configuration
- DNS and Routing
- Power Management
- Virtual Machine Startup/Shutdown
- Virtual Machine Swapfile Location
- Security Profile
- System Resource Allocation
- Advanced Settings

View: Virtual Switch, Distributed Virtual Switch

Networking

Virtual Switch: vSwitch0
- VMkernel
 vmk0: 172.31.46.7
- Virtual Machine Port Group
 - vM Network
 - 3 virtual machine(s)
 vm2
 vMA
 ubuntu
- Service Console Port
 - Service Console
 vsww1: 172.31.46.6
- Virtual Machine Port Group
 - BNT_Test
 VLAN ID: 2
- Virtual Machine Port Group
 - BNT_Default
 1 virtual machine(s)
 vm1

Properties
- Version: 1
- Timeout: 0
- Time to live: 83
- Samples: 723929
- Device ID: BLADE
- Address: 172.31.213.1
- Port ID: INT2
- Software Version: Unreleased: FW_VIEW:
- Hardware Platform: BNT 1/10Gb Uplink
- IP Prefix: 0.0.0.0
- IP Prefix Length: 0
- VLAN: 0
- Full Duplex: false
- MTU: 0
- System Name
- System Oid
- Management Address: 0.0.0.0
- Location
Virtual Ethernet Bridge (VEB) mode of operation today
- Relies on a soft switch in the hypervisor for intra-server data path
- External edge switch provides inter-server data path
- Configures soft switch to provide consistency with the Edge Switch
B: Data Path Switching (vNICs)

- Isolation is key property
 - DCBX to exchange vNIC parameters, S-Tags for ID
 - Two models: switch mode and I/O extender mode of operation
 - S-Tags either
 - carried to Network Cloud (Host I/O extender mode) or
 - stripped on ingress (Switch mode)
C: Stack Switch Tracking & Policy Enforcement

- Policy-based configuration on Edge Switch
 - Profiles created on switch or distributed switch
 - Virtual Interfaces (live or pending) assigned to Port Group
 - Profile attached to Port Group
- Migrate events cause Migrated VM ID to be attached to the same (BLUE) Port Group
 - Post-verification with VM Manager
- Drawback
 - Post-creation / post-move association of profile
 - Window small in the normal case since RARP sent before VM traffic
C : DC-wide Tracking & Policy Enforcement

- Policy-based configuration on Policy DB Manager
 - Profiles created on BHM
 - On creation, switch queries BHM for Profile
 - On Migrate, destination switch queries BHM for Profile
 - BHM performs post-verification with VM Manager
- Drawback
 - Post-move / creation association of profile
 - Window small in the normal case since RARP sent before VM traffic
Futures : ABC of Qbg

VM Migration

A. Virtual Interface Identification
B. Virtual Interface Data Path Switching
C. Virtual Interface Tracking & Policy Enforcement

Network Cloud (L2 or L3)

External Edge Switch

Hypervisor

IOV CNA

VM1
VM2
VM3

BLADE Network Technologies
VMready Changes for Qbg & Value Proposition

- **VEPA Mode**
 - All VM Traffic handled by external switch for larger context
 - Hardware-based Policy enforcement & traffic switching

- **VDP**
 - Pre-move or Pre-creation policy enforcement

Virtualization & Migration

VM Migration

External Edge Switch

Hypervisor

IOV CNA

VM1

VM2

VM3

Network Cloud (L2 or L3)

Policy dB

BLADE Harmony Manager
Network Manager & Profile Database

Integration for VSI Types

VM Manager
Firmware Architecture

- Hypervisor-vendor-specific Plugins
 - AAA
 - Configuration
 - CLI
 - XML based
 - SNMP v1/v2/v3
 - BBI
- EVB Control Stack
- Layer 2 Protocols & Layer 2 High Availability
- Layer 3 Protocols (IPv4, IPv6) & Layer 3 High Availability
- Protocol Application
- Virtual Port Switching Abstraction Layer
- v-port Identification Plugins
 - FC | FCoE v-port
 - Host I/O Extension
 - EVB v-port
 - IOV vNIC v-port
- Switching Silicon Abstraction
- OS and Hardware Abstraction Layer
 - Linux
 - Switch Silicon Device Drivers
 - Peripheral Drivers
- Hardware